Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.259
Filtrar
1.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726799

RESUMO

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Assuntos
Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Cadeias de Markov , Desempenho Psicomotor/fisiologia , Córtex Cerebral/fisiologia , Movimento/fisiologia , Ritmo beta/fisiologia
2.
Physiol Rep ; 12(9): e16001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697943

RESUMO

Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.


Assuntos
Ritmo beta , Doença de Parkinson , Núcleo Subtalâmico , Núcleo Subtalâmico/fisiopatologia , Doença de Parkinson/fisiopatologia , Humanos , Masculino , Ritmo beta/fisiologia , Pessoa de Meia-Idade , Feminino , Idoso , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Estimulação Encefálica Profunda/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38683718

RESUMO

Sleep is vital to our daily activity. Lack of proper sleep can impair functionality and overall health. While stress is known for its detrimental impact on sleep quality, the precise effect of pre-sleep stress on subsequent sleep structure remains unknown. This study introduced a novel approach to study the pre-sleep stress effect on sleep structure, specifically slow-wave sleep (SWS) deficiency. To achieve this, we selected forehead resting EEG immediately before and upon sleep onset to extract stress-related neurological markers through power spectra and entropy analysis. These markers include beta/delta correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and spectral entropy (SpEn). Fifteen subjects were included in this study. Our results showed that subjects lacking SWS often exhibited signs of stress in EEG, such as an increased beta/delta correlation, higher alpha asymmetry, and increased FuzzEn in frontal EEG. Conversely, individuals with ample SWS displayed a weak beta/delta correlation and reduced FuzzEn. Finally, we employed several supervised learning models and found that the selected neurological markers can predict subsequent SWS deficiency. Our investigation demonstrated that the classifiers could effectively predict varying levels of slow-wave sleep (SWS) from pre-sleep EEG segments, achieving a mean balanced accuracy surpassing 0.75. The SMOTE-Tomek resampling method could improve the performance to 0.77. This study suggests that stress-related neurological markers derived from pre-sleep EEG can effectively predict SWS deficiency. Such information can be integrated with existing sleep-improving techniques to provide a personalized sleep forecasting and improvement solution.


Assuntos
Algoritmos , Eletroencefalografia , Entropia , Sono de Ondas Lentas , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Sono de Ondas Lentas/fisiologia , Adulto , Adulto Jovem , Estresse Psicológico/fisiopatologia , Ritmo alfa/fisiologia , Previsões , Ritmo beta/fisiologia , Ritmo Delta , Privação do Sono/fisiopatologia , Reprodutibilidade dos Testes
4.
J Neural Eng ; 21(3)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653252

RESUMO

Objective.Beta triggered closed-loop deep brain stimulation (DBS) shows great potential for improving the efficacy while reducing side effect for Parkinson's disease. However, there remain great challenges due to the dynamics and stochasticity of neural activities. In this study, we aimed to tune the amplitude of beta oscillations with different time scales taking into account influence of inherent variations in the basal ganglia-thalamus-cortical circuit.Approach. A dynamic basal ganglia-thalamus-cortical mean-field model was established to emulate the medication rhythm. Then, a dynamic target model was designed to embody the multi-timescale dynamic of beta power with milliseconds, seconds and minutes. Moreover, we proposed a closed-loop DBS strategy based on a proportional-integral-differential (PID) controller with the dynamic control target. In addition, the bounds of stimulation amplitude increments and different parameters of the dynamic target were considered to meet the clinical constraints. The performance of the proposed closed-loop strategy, including beta power modulation accuracy, mean stimulation amplitude, and stimulation variation were calculated to determine the PID parameters and evaluate neuromodulation performance in the computational dynamic mean-field model.Main results. The Results show that the dynamic basal ganglia-thalamus-cortical mean-field model simulated the medication rhythm with the fasted and the slowest rate. The dynamic control target reflected the temporal variation in beta power from milliseconds to minutes. With the proposed closed-loop strategy, the beta power tracked the dynamic target with a smoother stimulation sequence compared with closed-loop DBS with the constant target. Furthermore, the beta power could be modulated to track the control target under different long-term targets, modulation strengths, and bounds of the stimulation increment.Significance. This work provides a new method of closed-loop DBS for multi-timescale beta power modulation with clinical constraints.


Assuntos
Gânglios da Base , Ritmo beta , Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Humanos , Gânglios da Base/fisiopatologia , Gânglios da Base/fisiologia , Ritmo beta/fisiologia , Modelos Neurológicos , Tálamo/fisiologia , Tálamo/fisiopatologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Simulação por Computador , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia
5.
Nat Commun ; 15(1): 3166, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605062

RESUMO

Increasing evidence suggests a considerable role of pre-movement beta bursts for motor control and its impairment in Parkinson's disease. However, whether beta bursts occur during precise and prolonged movements and if they affect fine motor control remains unclear. To investigate the role of within-movement beta bursts for fine motor control, we here combine invasive electrophysiological recordings and clinical deep brain stimulation in the subthalamic nucleus in 19 patients with Parkinson's disease performing a context-varying task that comprised template-guided and free spiral drawing. We determined beta bursts in narrow frequency bands around patient-specific peaks and assessed burst amplitude, duration, and their immediate impact on drawing speed. We reveal that beta bursts occur during the execution of drawing movements with reduced duration and amplitude in comparison to rest. Exclusively when drawing freely, they parallel reductions in acceleration. Deep brain stimulation increases the acceleration around beta bursts in addition to a general increase in drawing velocity and improvements of clinical function. These results provide evidence for a diverse and task-specific role of subthalamic beta bursts for fine motor control in Parkinson's disease; suggesting that pathological beta bursts act in a context dependent manner, which can be targeted by clinical deep brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Ritmo beta/fisiologia , Movimento/fisiologia
6.
BMC Psychol ; 12(1): 245, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689352

RESUMO

Decision-making under uncertainty, a cornerstone of human cognition, is encapsulated by the "secretary problem" in optimal stopping theory. Our study examines this decision-making challenge, where participants are required to sequentially evaluate and make irreversible choices under conditions that simulate cognitive overload. We probed neurophysiological responses by engaging 27 students in a secretary problem simulation while undergoing EEG monitoring, focusing on Event-Related Potentials (ERPs) P200 and P400, and Theta to Beta Ratio (TBR) dynamics.Results revealed a nuanced pattern: the P200 component's amplitude declined from the initial to the middle offers, suggesting a diminishing attention span as participants grew accustomed to the task. This attenuation reversed at the final offer, indicating a heightened cognitive processing as the task concluded. In contrast, the P400 component's amplitude peaked at the middle offer, hinting at increased cognitive evaluation, and tapered off at the final decision. Additionally, TBR dynamics illustrated a fluctuation in attentional control and emotional regulation throughout the decision-making sequence, enhancing our understanding of the cognitive strategies employed.The research elucidates the dynamic interplay of cognitive processes in high-stakes environments, with neurophysiological markers fluctuating significantly as participants navigated sequential choices. By correlating these fluctuations with decision-making behavior, we provide insights into the evolving strategies from heightened alertness to strategic evaluation. Our findings offer insights that could inform the use of neurophysiological data in the development of decision-making frameworks, potentially contributing to the practical application of cognitive research in real-life contexts.


Assuntos
Atenção , Tomada de Decisões , Eletroencefalografia , Potenciais Evocados , Humanos , Tomada de Decisões/fisiologia , Potenciais Evocados/fisiologia , Masculino , Feminino , Adulto Jovem , Atenção/fisiologia , Adulto , Cognição/fisiologia , Encéfalo/fisiologia , Incerteza , Ritmo Teta/fisiologia , Ritmo beta/fisiologia
7.
Nat Neurosci ; 27(5): 952-963, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499854

RESUMO

Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.


Assuntos
Ritmo beta , Vias Neurais , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Vias Neurais/fisiologia , Masculino , Ritmo beta/fisiologia , Camundongos , Optogenética , Comportamento Animal/fisiologia , Região Hipotalâmica Lateral/fisiologia , Recompensa , Neurônios Dopaminérgicos/fisiologia , Hipotálamo/fisiologia
8.
Brain Res Bull ; 209: 110911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432496

RESUMO

Bradykinesia, a debilitating symptom characterized by impaired movement initiation and reduced speed in Parkinson's disease (PD), is associated with abnormal oscillatory activity in the motor cortex-basal ganglia circuit. We investigated the interplay between abnormal beta and gamma oscillations in relation to bradykinesia in parkinsonian rats. Our findings showed reduced movement activities in parkinsonian rats, accompanied by enhanced high beta oscillations in the motor cortex, which are closely associated with movement transitional difficulties. Additionally, gamma oscillations correlated with movement velocity in control rats but not in parkinsonian rats. We observed selective coupling between high beta oscillation phase and gamma oscillation amplitude in PD, as well as cortical high beta-broadband gamma phase-amplitude coupling (PAC) negatively influencing locomotor activities in control and PD rats. These findings suggest a collaborative role of cortical beta and gamma oscillations in facilitating movement execution, with beta oscillations being linked to movement initiation and gamma oscillations associated with movement speed. Importantly, the aberrant alterations of these oscillations are closely related to the development of bradykinesia. Furthermore, PAC hold promise as a biomarker for comprehensive assessment of movement performance in PD.


Assuntos
Córtex Motor , Doença de Parkinson , Ratos , Animais , Hipocinesia , Gânglios da Base , Movimento , Ritmo beta
9.
Neuroimage ; 290: 120572, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490584

RESUMO

Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Motor/fisiologia , Inibição Psicológica , Ritmo beta/fisiologia , Transmissão Sináptica
10.
Clin Neurophysiol ; 161: 17-26, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432185

RESUMO

OBJECTIVE: Both blinking and walking are altered in Parkinson's disease and both motor outputs have been shown to be linked in healthy subjects. Additionally, studies suggest an involvement of basal ganglia activity and striatal dopamine in blink generation. We investigated the role of the basal ganglia circuitry on spontaneous blinking and if this role is dependent on movement state and striatal dopamine. METHODS: We analysed subthalamic nucleus (STN) activity in seven chronically implanted patients for deep brain stimulation (DBS) with respect to blinks and movement state (resting state and unperturbed walking). Neurophysiological recordings were combined with individual molecular brain imaging assessing the dopamine reuptake transporter (DAT) density for the left and right striatum separately. RESULTS: We found a significantly higher blink rate during walking compared to resting. The blink rate during walking positively correlated with the DAT density of the left caudate nucleus. During walking only, spontaneous blinking was followed by an increase in the right STN beta power and a bilateral subthalamic phase reset in the low frequencies. The right STN blink-related beta power modulation correlated negatively with the DAT density of the contralateral putamen. The left STN blink-related beta power correlated with the DAT density of the putamen in the less dopamine-depleted hemisphere. Both correlations were specific to the walking condition and to beta power following a blink. CONCLUSION: Our findings show that spontaneous blinking is related to striatal dopamine and has a frequency specific deployment in the STN. This correlation depends on the current movement state such as walking. SIGNIFICANCE: This work indicates that subcortical activity following a motor event as well as the relationship between dopamine and motor events can be dependent on the motor state. Accordingly, disease related changes in brain activity should be assessed during natural movement.


Assuntos
Ritmo beta , Piscadela , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Caminhada , Humanos , Núcleo Subtalâmico/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Masculino , Pessoa de Meia-Idade , Caminhada/fisiologia , Feminino , Piscadela/fisiologia , Idoso , Ritmo beta/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo
11.
Brain Stimul ; 17(2): 197-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38341176

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the thalamus can effectively reduce tics in severely affected patients with Tourette syndrome (TS). Its effect on cortical oscillatory activity is currently unknown. OBJECTIVE: We assessed whether DBS modulates beta activity at fronto-central electrodes. We explored concurrent EEG sources and probabilistic stimulation maps. METHODS: Resting state EEG of TS patients treated with thalamic DBS was recorded in repeated DBS-on and DBS-off states. A mixed linear model was employed for statistical evaluation. EEG sources were estimated with eLORETA. Thalamic probabilistic stimulation maps were obtained by assigning beta power difference scores (DBS-on minus DBS-off) to stimulation sites. RESULTS: We observed increased beta power in DBS-on compared to DBS-off states. Modulation of cortical beta activity was localized to the midcingulate cortex. Beta modulation was more pronounced when stimulating the thalamus posteriorly, peaking in the ventral posterior nucleus. CONCLUSION: Thalamic DBS in TS patients modulates beta frequency oscillations presumably important for sensorimotor function and relevant to TS pathophysiology.


Assuntos
Ritmo beta , Estimulação Encefálica Profunda , Tálamo , Síndrome de Tourette , Humanos , Síndrome de Tourette/terapia , Síndrome de Tourette/fisiopatologia , Estimulação Encefálica Profunda/métodos , Masculino , Tálamo/fisiopatologia , Tálamo/fisiologia , Adulto , Ritmo beta/fisiologia , Feminino , Eletroencefalografia , Adulto Jovem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Pessoa de Meia-Idade , Adolescente
12.
J Integr Neurosci ; 23(2): 25, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38419453

RESUMO

BACKGROUND: Parkinson's disease is one of the most common neurodegenerative disorders. While a definitive cure for Parkinson's disease remains elusive, a range of treatments are available to slow its progression and counteract its symptoms. Transcranial direct current stimulation (tDCS) represents a non-invasive method to induce brain plasticity. The aim of this study was to examine the effects of two weeks of tDCS on the left dorsolateral prefrontal cortex (DLPFC) on the neurophysiological functioning of Parkinson's patients. METHODS: Thirty patients aged between 67 and 82 years with Parkinson's disease participated to the experiment. Fifteen underwent tDCS on the left DLPFC, while fifteen underwent sham tDCS. Neurophysiological functions were assessed before and after tDCS using electroencephalogram methods for alpha and beta band rhythms and P300 event-related potential latency. RESULTS: tDCS led to a reduction in the onset latency of the P300 response and an increase in the power spectrum of the alpha and beta band rhythms. CONCLUSIONS: This research enhances our understanding of the potential effects of tDCS in the context of Parkinson's disease treatment, as the reduction in P300 latency and the increase in alpha and beta bands are associated with improvements in cognitive aspects.


Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Idoso de 80 Anos ou mais , Estimulação Transcraniana por Corrente Contínua/métodos , Doença de Parkinson/terapia , Córtex Pré-Frontal/fisiologia , Eletroencefalografia/métodos , Ritmo beta
13.
Parkinsonism Relat Disord ; 121: 106010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38245382

RESUMO

Neurofeedback (NF) techniques support individuals to self-regulate specific features of brain activity, which has been shown to impact behavior and potentially ameliorate clinical symptoms. Electrophysiological NF (epNF) may be particularly impactful for patients with Parkinson's disease (PD), as evidence mounts to suggest a central role of pathological neural oscillations underlying symptoms in PD. Exaggerated beta oscillations (12-30 Hz) in the basal ganglia-cortical network are linked to motor symptoms (e.g., bradykinesia, rigidity), and beta is reduced by successful therapy with dopaminergic medication and Deep Brain Stimulation (DBS). PD patients also experience non-motor symptoms related to sleep, mood, motivation, and cognitive control. Although less is known about the mechanisms of non-motor symptoms in PD and how to successfully treat them, low frequency neural oscillations (1-12 Hz) in the basal ganglia-cortical network are particularly implicated in non-motor symptoms. Here, we review how cortical and subcortical epNF could be used to target motor and non-motor specific oscillations, and potentially serve as an adjunct therapy that enables PD patients to endogenously control their own pathological neural activities. Recent studies have demonstrated that epNF protocols can successfully support volitional control of cortical and subcortical beta rhythms. Importantly, this endogenous control of beta has been linked to changes in motor behavior. epNF for PD, as a casual intervention on neural signals, has the potential to increase understanding of the neurophysiology of movement, mood, and cognition and to identify new therapeutic approaches for motor and non-motor symptoms.


Assuntos
Estimulação Encefálica Profunda , Neurorretroalimentação , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Gânglios da Base/patologia , Movimento , Ritmo beta/fisiologia , Estimulação Encefálica Profunda/métodos
14.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37973377

RESUMO

Individuals' phenotypes, including the brain's structure and function, are largely determined by genes and their interplay. The resting brain generates salient rhythmic patterns that can be characterized noninvasively using functional neuroimaging such as magnetoencephalography (MEG). One of these rhythms, the somatomotor (rolandic) beta rhythm, shows intermittent high amplitude "events" that predict behavior across tasks and species. Beta rhythm is altered in neurological disease. The aperiodic (1/f) signal present in electrophysiological recordings is also modulated by some neurological conditions and aging. Both sensorimotor beta and aperiodic signal could thus serve as biomarkers of sensorimotor function. Knowledge about the extent to which these brain functional measures are heritable could shed light on the mechanisms underlying their generation. We investigated the heritability and variability of human spontaneous sensorimotor beta rhythm events and aperiodic activity in 210 healthy male and female adult siblings' spontaneous MEG activity. The most heritable trait was the aperiodic 1/f signal, with a heritability of 0.87 in the right hemisphere. Time-resolved beta event amplitude parameters were also highly heritable, whereas the heritabilities for overall beta power, peak frequency, and measures of event duration remained nonsignificant. Human sensorimotor neural activity can thus be dissected into different components with variable heritability. We postulate that these differences partially reflect different underlying signal-generating mechanisms. The 1/f signal and beta event amplitude measures may depend more on fixed, anatomical parameters, whereas beta event duration and its modulation reflect dynamic characteristics, guiding their use as potential disease biomarkers.


Assuntos
Encéfalo , Magnetoencefalografia , Adulto , Humanos , Masculino , Feminino , Magnetoencefalografia/métodos , Encéfalo/fisiologia , Mapeamento Encefálico , Ritmo beta/fisiologia , Biomarcadores
15.
Mov Disord ; 39(1): 85-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37860957

RESUMO

BACKGROUND: Preserved cycling capabilities in patients with Parkinson's disease, especially in those with freezing of gait are still poorly understood. Previous research with invasive local field potential recordings in the subthalamic nucleus has shown that cycling causes a stronger suppression of ß oscillations compared to walking, which facilitates motor continuation. METHODS: We recorded local field potentials from 12 patients with Parkinson's disease (six without freezing of gait, six with freezing of gait) who were bilaterally implanted with deep brain stimulation electrodes in the subthalamic nucleus. We investigated ß (13-30 Hz) and high γ (60-100 Hz) power during both active and passive cycling with different cadences and compared patients with and without freezing of gait. The passive cycling experiment, where a motor provided a fixed cadence, allowed us to study the effect of isolated sensory inputs without physical exercise. RESULTS: We found similarly strong suppression of pathological ß activity for both active and passive cycling. In contrast, there was stronger high γ band activity for active cycling. Notably, the effects of active and passive cycling were all independent of cadence. Finally, ß suppression was stronger for patients with freezing of gait, especially during passive cycling. CONCLUSIONS: Our results provide evidence for a link between proprioceptive input during cycling and ß suppression. These findings support the role of continuous external sensory input and proprioceptive feedback during rhythmic passive cycling movements and suggest that systematic passive mobilization might hold therapeutic potential. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Transtornos Neurológicos da Marcha/etiologia , Caminhada , Marcha/fisiologia , Estimulação Encefálica Profunda/métodos , Ritmo beta/fisiologia
16.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38123981

RESUMO

Excessive oscillatory activity across basal ganglia (BG) nuclei in the ß frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated ß oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of ß-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal ß oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal ß oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-ß (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-ß range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD ß oscillations and may thereby guide the future development of therapeutic strategies.


Assuntos
Doença de Parkinson , Núcleo Subtalâmico , Ratos , Animais , Gânglios da Base/fisiologia , Globo Pálido/fisiologia , Neurônios/fisiologia , Ritmo beta/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38083088

RESUMO

ADHD is a neurodevelopmental disorder largely diffused among children and adolescents. The current method of diagnosis is based on agreed clinical literature such as DSM-5, by identifying and evaluating signs of hyperactivity and inattention. Multiple reviews have assessed that EEG is not sufficiently reliable for the diagnosis of ADHD. Theta-Beta Ratio is now the sole EEG parameter considered for analysis, although it is not robust enough to be utilized as a confirmatory technique for diagnosis. In this setting, new objective approaches for reliably classifying neurotypical and ADHD subjects are required. As a result, we suggest a new methodology based on Functional Data Analysis, a statistical class of methods for dealing with curves and functions. The initial stage in our method is to separate frequency bands from the EEG signal using a wavelet decomposition. We next compute the Power Spectral Densities of each of these bands and represent them as mathematical functions via spline interpolation. Finally, the relevance of the collected features is assessed using the Permutation ANOVA test. Using this method, we can detect different patterns in the PSDs of the groups and identify statistically significant features, confirming prior findings in the literature. We validate the features using classification techniques such as Bagging trees, Random Forest, and AdaBoost. The latter reaches the highest accuracy score of 76.65%, confirming the relevance of the extracted features.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Eletroencefalografia , Criança , Adolescente , Humanos , Eletroencefalografia/métodos , Ritmo Teta , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Ritmo beta , Análise de Dados
18.
PLoS One ; 18(11): e0294512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011104

RESUMO

OBJECTIVE: Local field potential (LFP) recordings from deep brain stimulation (DBS) electrodes are commonly used in research analyses, and are beginning to be used in clinical practice. Computational models of DBS LFPs provide tools for investigating the biophysics and neural synchronization that underlie LFP signals. However, technical standards for DBS LFP model parameterization remain to be established. Therefore, the goal of this study was to evaluate the role of the volume conductor (VC) model complexity on simulated LFP signals in the subthalamic nucleus (STN). APPROACH: We created a detailed human head VC model that explicitly represented the inhomogeneity and anisotropy associated with 12 different tissue structures. This VC model represented our "gold standard" for technical detail and electrical realism. We then incrementally decreased the complexity of the VC model and quantified the impact on the simulated LFP recordings. Identical STN neural source activity was used when comparing the different VC model variants. Results Ignoring tissue anisotropy reduced the simulated LFP amplitude by ~12%, while eliminating soft tissue heterogeneity had a negligible effect on the recordings. Simplification of the VC model to consist of a single homogenous isotropic tissue medium with a conductivity of 0.215 S/m contributed an additional ~3% to the error. SIGNIFICANCE: Highly detailed VC models do generate different results than simplified VC models. However, with errors in the range of ~15%, the use of a well-parameterized simple VC model is likely to be acceptable in most contexts for DBS LFP modeling.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Eletrodos , Ritmo beta/fisiologia , Modelos Neurológicos
19.
PLoS Comput Biol ; 19(11): e1011595, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934766

RESUMO

Natural speech perception requires processing the ongoing acoustic input while keeping in mind the preceding one and predicting the next. This complex computational problem could be handled by a dynamic multi-timescale hierarchical inferential process that coordinates the information flow up and down the language network hierarchy. Using a predictive coding computational model (Precoss-ß) that identifies online individual syllables from continuous speech, we address the advantage of a rhythmic modulation of up and down information flows, and whether beta oscillations could be optimal for this. In the model, and consistent with experimental data, theta and low-gamma neural frequency scales ensure syllable-tracking and phoneme-level speech encoding, respectively, while the beta rhythm is associated with inferential processes. We show that a rhythmic alternation of bottom-up and top-down processing regimes improves syllable recognition, and that optimal efficacy is reached when the alternation of bottom-up and top-down regimes, via oscillating prediction error precisions, is in the beta range (around 20-30 Hz). These results not only demonstrate the advantage of a rhythmic alternation of up- and down-going information, but also that the low-beta range is optimal given sensory analysis at theta and low-gamma scales. While specific to speech processing, the notion of alternating bottom-up and top-down processes with frequency multiplexing might generalize to other cognitive architectures.


Assuntos
Percepção da Fala , Fala , Ritmo beta , Idioma , Reconhecimento Psicológico
20.
J Neurosci ; 43(49): 8487-8503, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37833066

RESUMO

Beta activity is thought to play a critical role in sensorimotor processes. However, little is known about how activity in this frequency band develops. Here, we investigated the developmental trajectory of sensorimotor beta activity from infancy to adulthood. We recorded EEG from 9-month-old, 12-month-old, and adult humans (male and female) while they observed and executed grasping movements. We analyzed "beta burst" activity using a novel method that combines time-frequency decomposition and principal component analysis. We then examined the changes in burst rate and waveform motifs along the selected principal components. Our results reveal systematic changes in beta activity during action execution across development. We found a decrease in beta burst rate during movement execution in all age groups, with the greatest decrease observed in adults. Additionally, we identified three principal components that defined waveform motifs that systematically changed throughout the trial. We found that bursts with waveform shapes closer to the median waveform were not rate-modulated, whereas those with waveform shapes further from the median were differentially rate-modulated. Interestingly, the decrease in the rate of certain burst motifs occurred earlier during movement and was more lateralized in adults than in infants, suggesting that the rate modulation of specific types of beta bursts becomes increasingly refined with age.SIGNIFICANCE STATEMENT We demonstrate that, like in adults, sensorimotor beta activity in infants during reaching and grasping movements occurs in bursts, not oscillations like thought traditionally. Furthermore, different beta waveform shapes were differentially modulated with age, including more lateralization in adults. Aberrant beta activity characterizes various developmental disorders and motor difficulties linked to early brain injury, so looking at burst waveform shape could provide more sensitivity for early identification and treatment of affected individuals before any behavioral symptoms emerge. More generally, comparison of beta burst activity in typical versus atypical motor development will also be instrumental in teasing apart the mechanistic functional roles of different types of beta bursts.


Assuntos
Lesões Encefálicas , Movimento , Adulto , Lactente , Humanos , Masculino , Feminino , Sensação , Ritmo beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA